BBSRC Application References

1 Juusola, M. et al. Theory of morphodynamic information processing: linking sensing to behaviour. Vision Res 227, 1-30 (2025). https://doi.org:10.1016/j.visres.2024.108537

2 Fenk, L. M. et al. Muscles that move the retina augment compound eye vision in Drosophila. Nature 612, 116-122 (2022). https://doi.org:10.1038/s41586-022-05317-5

3 Franceschini, N., Chagneux, R. & Kirschfeld, K. Gaze control in flies by co-ordinated action of eye muscles. 401 (1995).

4 Juusola, M. et al. Microsaccadic sampling of moving image information provides Drosophila hyperacute vision. Elife 6 (2017). https://doi.org:10.7554/eLife.26117

5 Kemppainen, J., Mansour, N., Takalo, J. & Juusola, M. High-speed imaging of light-induced photoreceptor microsaccades in compound eyes. Commun Biol 5, 203 (2022). https://doi.org:10.1038/s42003-022-03142-0

6 Kemppainen, J. et al. Binocular mirror-symmetric microsaccadic sampling enables Drosophila hyperacute 3D vision. Proc Natl Acad Sci U S A 119, e2109717119 (2022). https://doi.org:10.1073/pnas.2109717119

7 Juusola, M. & Song, Z. Y. How a fly photoreceptor samples light information in time. J Physiol Lond 595, 5427-5437 (2017). https://doi.org:10.1113/Jp273645

8 Tang, S. & Juusola, M. Intrinsic activity in the fly brain gates visual information during behavioral choices. PLoS One 5, e14455 (2010). https://doi.org:10.1371/journal.pone.0014455

9 Chiappe, M. E., Seelig, J. D., Reiser, M. B. & Jayaraman, V. Walking modulates speed sensitivity in Drosophila motion vision. Curr Biol 20, 1470-1475 (2010). https://doi.org:10.1016/j.cub.2010.06.072

10 Grabowska, M. J., Jeans, R., Steeves, J. & van Swinderen, B. Oscillations in the central brain of Drosophila are phase locked to attended visual features. Proc Natl Acad Sci U S A 117, 29925-29936 (2020). https://doi.org:10.1073/pnas.2010749117

11 van Swinderen, B. Attention in Drosophila. Int Rev Neurobiol 99, 51-85 (2011). https://doi.org:10.1016/B978-0-12-387003-2.00003-3

12 Juusola, M. & Hardie, R. C. Light adaptation in Drosophila photoreceptors: II. Rising temperature increases the bandwidth of reliable signaling J Gen Physiol 117, 27–42 (2001).

13 Juusola, M. & Hardie, R. C. Light Adaptation in Drosophila Photoreceptors: I. Response Dynamics and Signaling Efficiency at 25°C. J Gen Physiol 117, 3-25 (2001). https://doi.org:DOI 10.1085/jgp.117.1.27

14 Wardill, T. J. et al. Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science 336, 925-931 (2012). https://doi.org:10.1126/science.1215317

15 Zheng, L. et al. Feedback network controls photoreceptor output at the layer of first visual synapses in Drosophila. J Gen Physiol 127, 495-510 (2006). https://doi.org:10.1085/jgp.200509470

16 Zheng, L. et al. Network adaptation improves temporal representation of naturalistic stimuli in Drosophila eye: I dynamics. PLoS One 4, e4307 (2009). https://doi.org:10.1371/journal.pone.0004307

17 Hao, Y. A. et al. A fast and responsive voltage indicator with enhanced sensitivity for unitary synaptic events. Neuron 112 (2024). https://doi.org:10.1016/j.neuron.2024.08.019

18 Zhang, Y. et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615, 884-+ (2023). https://doi.org:10.1038/s41586-023-05828-9

19 Osorio, D. Spam and the evolution of the fly's eye. Bioessays 29, 111-115 (2007). https://doi.org:10.1002/bies.20533

20 Zelhof, A. C., Hardy, R. W., Becker, A. & Zuker, C. S. Transforming the architecture of compound eyes. Nature 443, 696-699 (2006). https://doi.org:10.1038/nature05128

21 Juusola, M., Dau, A., Zheng, L. & Rien, D. N. Electrophysiological method for recording intracellular voltage responses of photoreceptors and interneurons to light stimuli. Jove-J Vis Exp (2016). https://doi.org:ARTN e54142 10.3791/54142

22 Meinertzhagen, I. A. & O'Neil, S. D. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J Comp Neurol 305, 232-263 (1991). https://doi.org:10.1002/cne.903050206

23 Rivera-Alba, M. et al. Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain. Curr Biol 21, 2000-2005 (2011). https://doi.org:10.1016/j.cub.2011.10.022

24 Lappalainen, J. K. et al. Connectome-constrained networks predict neural activity across the fly visual system. Nature 634 (2024). https://doi.org:10.1038/s41586-024-07939-3

25 Lin, A. et al. Network statistics of the whole-brain connectome of. Nature 634 (2024). https://doi.org:10.1038/s41586-024-07968-y

26 Borst, A. Drosophila's view on insect vision. Curr Biol 19, 36-47 (2009). https://doi.org:10.1016/j.cub.2008.11.001

27 Land, M. F. Visual acuity in insects. Ann Rev Entomol 42, 147-177 (1997). https://doi.org:DOI 10.1146/annurev.ento.42.1.147

28 Laughlin, S. B. The role of sensory adaptation in the retina. J Exp Biol 146, 39-62 (1989).

29 Chiappe, M. E. Circuits for self-motion estimation and walking control in Drosophila. Curr Opin Neurobiol 81, 102748 (2023). https://doi.org:10.1016/j.conb.2023.102748

30 Fujiwara, T., Brotas, M. & Chiappe, M. E. Walking strides direct rapid and flexible recruitment of visual circuits for course control in Drosophila. Neuron 110, 2124-2138 e2128 (2022). https://doi.org:10.1016/j.neuron.2022.04.008

31 Fujiwara, T., Cruz, T. L., Bohnslav, J. P. & Chiappe, M. E. A faithful internal representation of walking movements in the Drosophila visual system. Nat Neurosci 20, 72-81 (2017). https://doi.org:10.1038/nn.4435

32 Tang, S., Wolf, R., Xu, S. & Heisenberg, M. Visual pattern recognition in Drosophila is invariant for retinal position. Science 305, 1020-1022  https://doi.org:DOI: 10.1126/science.1099839

33 Chittka, L. & Spaethe, J. Visual search and the importance of time in complex decision making by bees. Arthropod-Plant Inte 1, 37-44 (2007). https://doi.org:10.1007/s11829-007-9001-8

34 Tuthill, J. C., Nern, A., Holtz, S. L., Rubin, G. M. & Reiser, M. B. Contributions of the 12 Neuron Classes in the Fly Lamina to Motion Vision. Neuron 79, 128-140 (2013). https://doi.org:10.1016/j.neuron.2013.05.024

35 Kolodziejczyk, A., Sun, X., Meinertzhagen, I. A. & Nassel, D. R. Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system. PLoS One 3, e2110 (2008). https://doi.org:10.1371/journal.pone.0002110

36 Aso, Y. et al. The neuronal architecture of the mushroom body provides a logic for associative learning. Elife 3 (2014). https://doi.org:ARTN e04577 10.7554/eLife.04577

37 Felsenberg, J., Barnstedt, O., Cognigni, P., Lin, S. W. & Waddell, S. Re-evaluation of learned information in. Nature 544, 240-+ (2017). https://doi.org:10.1038/nature21716

38 Matsliah, A. et al. Neuronal parts list and wiring diagram for a visual system. Nature 634 (2024). https://doi.org:10.1038/s41586-024-07981-1

39 Lee, T. & Luo, L. Q. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461 (1999). https://doi.org:Doi 10.1016/S0896-6273(00)80701-1

40 Hampel, S. et al. Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 8, 253-U102 (2011). https://doi.org:10.1038/Nmeth.1566

41 Nern, A., Pfeiffer, B. D. & Rubin, G. M. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. P Natl Acad Sci USA 112, E2967-E2976 (2015). https://doi.org:10.1073/pnas.1506763112

42 Lai, S. L. & Lee, T. Genetic mosaic with dual binary transcriptional systems in. Nat Neurosci 9, 703-709 (2006). https://doi.org:10.1038/nn1681

43 Luan, H. J., Peabody, N. C., Vinson, C. R. & White, B. H. Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52, 425-436 (2006). https://doi.org:10.1016/j.neuron.2006.08.028

44 Diao, F. Q. et al. Plug-and-Play Genetic Access to

 Cell Types using Exchangeable Exon Cassettes. Cell Reports 10, 1410-1421 (2015). https://doi.org:10.1016/j.celrep.2015.01.059

45 Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. Elife 9 (2020). https://doi.org:10.7554/eLife.57443

46 Liu, G. et al. Distinct memory traces for two visual features in the brain. Nature 439, 551-556 (2006). https://doi.org:10.1038/nature04381

47 Neuser, K., Triphan, T., Mronz, M., Poeck, B. & Strauss, R. Analysis of a spatial orientation memory in. Nature 453, 1244-U1244 (2008). https://doi.org:10.1038/nature07003

48 Kim, S. S., Rouault, H., Druckmann, S. & Jayaraman, V. Ring attractor dynamics in the Drosophila central brain. Science 356, 849-853 (2017). https://doi.org:10.1126/science.aal4835

49 Seelig, J. D. & Jayaraman, V. Feature detection and orientation tuning in the Drosophila central complex. Nature 503, 262-266 (2013). https://doi.org:10.1038/nature12601

50 Seelig, J. D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path integration. Nature 521, 186-191 (2015). https://doi.org:10.1038/nature14446

51 Turner-Evans, D. et al. Angular velocity integration in a fly heading circuit. Elife 6 (2017). https://doi.org:ARTN e23496 10.7554/eLife.23496

52 Pires, P. M., Zhang, L. W., Parache, V., Abbott, L. F. & Maimon, G. Converting an allocentric goal into an egocentric steering signal. Nature (2024). https://doi.org:10.1038/s41586-023-07006-3

53 Lyu, C., Abbott, L. F. & Maimon, G. Building an allocentric travelling direction signal via vector computation. Nature 601, 92-+ (2022). https://doi.org:10.1038/s41586-021-04067-0

54 Lu, J. et al. Transforming representations of movement from body- to world-centric space. Nature 601, 98-+ (2022). https://doi.org:10.1038/s41586-021-04191-x

55 Green, J. et al. A neural circuit architecture for angular integration in. Nature 546, 101-+ (2017). https://doi.org:10.1038/nature22343

56 Jovanoski, K. D. et al. Dopaminergic systems create reward seeking despite adverse consequences. Nature 623, 356-+ (2023). https://doi.org:10.1038/s41586-023-06671-8

57 Rubin, G. M. & Aso, Y. New genetic tools for mushroom body output neurons in. Elife 12 (2024). https://doi.org:ARTN RP90523 10.7554/eLife.90523

58 Haberkern, H. et al. Visually Guided Behavior and Optogenetically Induced Learning in Head-Fixed Flies Exploring a Virtual Landscape. Current Biology 29, 1647-+ (2019). https://doi.org:10.1016/j.cub.2019.04.033

59 Tang, S. M. & Guo, A. Choice behavior of acing contradictory visual cues. Science 294, 1543-1547 (2001). https://doi.org:DOI 10.1126/science.1058237

60 Okray, Z. et al. Multisensory learning binds neurons into a cross-modal memory engram. Nature 617, 777-+ (2023). https://doi.org:10.1038/s41586-023-06013-8

61 Burke, C. J. et al. Layered reward signalling through octopamine and dopamine in. Nature 492, 433-+ (2012). https://doi.org:10.1038/nature11614

62 Song, Z., Zhou, Y., Feng, J. & Juusola, M. Multiscale 'whole-cell' models to study neural information processing - New insights from fly photoreceptor studies. J Neurosci Methods 357, 109156 (2021). https://doi.org:10.1016/j.jneumeth.2021.109156

63 Razban Haghighi, K. The Drosophila visual system: a super-efficient encoder PhD thesis, University of Sheffield, (2023).

64 Romero-Ferrero, F., Bergomi, M. G., Hinz, R. C., Heras, F. J. H. & de Polavieja, G. G. idtracker.ai: tracking all individuals in small or large collectives of unmarked animals. Nat Methods 16, 179-+ (2019). https://doi.org:10.1038/s41592-018-0295-5

65 Song, Z. & Juusola, M. Refractory sampling links efficiency and costs of sensory encoding to stimulus statistics. J Neurosci 34, 7216-7237 (2014). https://doi.org:10.1523/JNEUROSCI.4463-13.2014

66 Song, Z. et al. Stochastic, adaptive sampling of information by microvilli in fly photoreceptors. Curr Biol 22, 1371-1380 (2012). https://doi.org:10.1016/j.cub.2012.05.047

67 Dorkenwald, S. et al. Neuronal wiring diagram of an adult brain. Nature 634 (2024). https://doi.org:10.1038/s41586-024-07558-y

68 Li, F. et al. The connectome of the adult mushroom body provides insights into function. Elife 9 (2020). https://doi.org:ARTN e62576 10.7554/eLife.62576

69 Juusola, M., Song, Z. & Hardie, R. C. in Encyclopedia of Computational Neuroscience   (eds D. Jaeger & R. Jung)  2758-2776 (Springer, 2022).



How to donate

Please contact Mikko (m.juusola@sheffield.ac.uk) if you are excited by our research and would like to help support it.